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By combining discretization and weighting on nodes, one can in the limit
approximate on infinite sets under Lagrange-type interpolatory constraints, enab-
ling the use of existing algorithms and programs.  © 1985 Academic Press, Inc.

Let W be a compact metric space with metric p. For any compact subset
Y of W, let C(Y) be the space of real (or complex) continuous functions on
Y and for ge C(Y), define

lgll y=sup{lglx)l:xe Y}.

Let X be a compact subset of W and Z a finite subset of X. Let F be a
given approximating function with parameter 4 taken from a nonempty
closed subset P of real (or complex) n-space such that F(4, -Ye C(W) for
all Ae P. The problem of approximation on X with interpolation on Z is:
given fe C(W), find a parameter A* € P minimizing | f— F(A4, - )|y over 4
subject to the constraint

F(4, xy=f(x), xeZ (*)

Such a parameter A* is called best, and F(A4* -) is called a best
approximation to f on X with interpolation on Z.
Let | ||, be the maximum norm on n-space.
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DEFNITION. A compact subset ¥ of W is called parameter bounding if
for a sequence {4*} c P, |4*|.— oo implies |F(4%, )|y — .

DerFINITION.  (F, P) satisfies Young’s condition [3,4] if

(i) W has a parameter bounding subset for (F, P),
(i) AeP, {4*}cP, {4*} > 4 implies {F(4", -)} - F(4,") uni-
formly on W.

Families with Young’s condition include finite-dimensional linear
families, real families unisolvent on an interval [a, b], tame rationals
[5, 61, and some transformations thereof [3, 6].

Dunham [2] has shown that interpolating approximation by families
satisfying Young’s condition is the limit of weighted approximation with
weights 1 off Z and tending to oo on Z, and that [3] approximation by
families satisfying Young’s condition {without interpolation) on compact X
is the limit of approximation on X,, where {X,} — X.

DEerFINITION [7]. Let X, ¥ be nonempty subsets of W, define

dist(X, Y)=sup{inf[p(x, y): xe X]: ye Y},
d(X, Y)=max{dist(X, Y), dist(¥, X)}.

Let X, X,, X,,., X;,.. be compact subsets of W. We say {X,} - X if
d(X,, X) 0.

Combining the results of [2] and [3] (with a slight generalization [7]
of the definition of {X,}— X given in [3]), if we approximate on X,
tending to X with a weight w, which is one off Z and which tends to oo on
Z, the limit would be best on X with respect to (x). Best approximations
with respect to weights w, exist by standard arguments.

THEOREM. Let (F, P) satisfy Young's condition. Let {X,} > X, Z< X,
YcXnX,, where Y is a parameter bounding set. Let there exist F(B, )
satisfying (). Let {w,} be a sequence of positive weight functions on W such
that w,=1 off Z and wy(x)— oo for xe Z. Let A* be best on X, with
respect to wy. Then {A*} has an accumulation point and if A° is an
accumulation point, A° is best and there is a sequence {k(j)} such that
{F(A*Y), -)} - F(A°, ) uniformly on W.

Proof. For convenience, the norm on X, will be denoted by || ||, and
the norm on X by | |. Suppose {A*} is unbounded. From Young’s con-
dition, {|F(4* )|y} is unbounded and, as Yc<X,, {|F(4% Mt is
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unbounded. Hence {||f— F(4*, -)|l.} is unbounded, {|w,(f—F(A*, -}
is unbounded. But

e (F = F(AX Dl < lwies (f~ F(B, )l
=|f—FB, )«
<If=FB, )w< oo,

this is a contradiction.

As {A4*} is bounded, it has an accumulation point 4°. By taking a sub-
sequence if necessary, we can assume {A*} — 4% We claim A° satisfies ().
Suppose not then there is ¢>0 and xe& Z such that |f(x)— F(4° x)| >e.
Since  F(A*, x)— F(4% x), we have for &k sufficiently large
Lfix)— F(4*, x)| > (¢/2), hence

welf = F(A*, D 2 wi(0)1f (x) = F(A%, x)| — 05

this is a contradiction again.
Now we prove

lim inf [we(f~ F(AS Dz 1f = FA4% I 1)

Let xe X such that || f— F(4° -} = |f(x)— F(4°% x)|. As {X,} > X, there
exist x, € Xy, {x;} - x. Then

Lf(x) = F(A°, )] < 1f () = el + 1f () = F(AX, X))
+F(AY, x,) = F(4°, x| + | F(4°, x,) — F(A° x)],
|f0x) = F(AS, x )1 21— FA°, )|~ 1f(x) = f(x0)]
— |F(4*, x,) — F(4°, x;)]
— |F(4°% x,)— F(4° x)).

For given &> 0, there exists K such that, for k> K,

£ () = f (x| + 1 F(A", x,) = F(A°, x0)] + |F(A° x,) — F(4°, x)| <.

Hence, for k> K,

Iwelf = (A5, Nl 2 1f = F(AS, e 2 1 () — F(A5 x,)]
> || f= F(A4°% )l e,

and (1) is proven.
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Suppose A° is not best with respect to (x). Then there is C satisfying ()
and &> 0 such that

If=F(C, M < f— F(4° )| —e (2)
From (1), for k sufficiently large,
fwilf— FCA%, D> 1 f = F(A° ) —ef2. (3)

Let x,eX, such that [[f—F(C, Me=1f(x0)—F(C x)l. As |f(x)~
F(C, x)| is uniformly continuous on W, and {X,} — X, for & sufficiently
large, there exist y, € X such that

|f(xe) = F(C, x )l < | f(ye) = F(C, i)l +¢/2,
hence for & sufficiently large,
Lf=F(C e < If=FC, )l + /2. 4)

We note that inequality (4) is valid for any continuous function on W,
From (2)-(4), we have for k sufficiently large,

Iwel f (A5 D> 1 f = F(C, - (3)
But | f— F(C, )l = we(f— F(C, - )llx» (5) contradicts optimality of 4*,
A° is best, and uniform convergence follows by Young’s condition.

Remark. 1f f has a unique best interpolating approximation F(A4°, -),
we have {F(4*, -)} - F(4° -} uniformly on W (even if 4° is not unique).
In fact, suppose not, then {F(4%, -)} has at least two limit points.

Remark. The conclusion may not hold if Young’s condition fails (see
the example at the end of [7]).

Remark. We have
klifio Iwel f — F(A*, D= 1Lf—F(4°% ). (6)

In fact,

wel f— F(A%, )ik < Iwil f = F(A° D= 1/ = F(A°,

and, by the note after inequality (4), given £> 0, for & sufficiently large,

If—F(A° Wi <lif— F(A°, )l +e
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Hence,

tim sup [w,(f— F(4* Dl < 1/~ F(4% ). ™

(1) and (7) imply (6).

The results of this paper are of practical interest as programs and
algorithms for weighted discrete approximation are available [1, Chap. 2,
4, pp. 173-176, 5, p. 21ff, 6, pp. 9-10, &, 9, 10].

Remark. As noted in [10, p. 142], general linear or rational
approximation can absorb weights even if the problem statement or
program makes no mention of them), but are scarce for approximation
with interpolation. For example, if X is an interval [q, b], we can choose

U Z as X,, where X is a discrete set of k+ 1 equally spaced points on
[a, b], whose endpoints are included in X.

In contrast, merely increasing weights on nodes [2] on infinite X (e.g., X
an interval) does not yield an algorithm, as the weights need not be con-
tinuous on X.
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